YuZhao Wang
个人简介
YuZhao Wang,北京大学数学博士;主要研究调和分析与偏微分方程,曾任华北电力大学数理学院副教授,现任伯明翰大学数学学院讲师。
联系方式
邮件:y.wang.14@bham.ac.uk
教育背景
2005年吉林大学数学理学学士
2010年北京大学数学博士
科研专长及成果
其主要研究领域是非线性色散偏微分方程(PDEs)的数学分析,工具包括谐波分析、概率论和动力系统。他对Strichartz估计及其在离散非线性偏微分方程中的应用、非线性离散偏微分方程的概率和应用于非线性离散偏微分方程的范式方法尤为感兴趣。在适当的情况下,这点可提供当前和以前的学术研究活动的具体描述。最近的研究兴趣写在开头,如果需要添加研究小组和特定项目,可以使用进一步的子标题来细分这一部分。
教学专长及成果
主讲:RAC实分析与微积分
代表性学术出版物
Oh, T., Wang, Y., On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle to appear in An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.)
Xiao, J., Wang, Y., A constructive approach to positive solutions of Δ_p u+f(u,∇u)≤0 on Riemannian manifolds, Ann. Inst. H. Poincaré Anal. Non Linéaire 33 (2016), no. 6, 1497--1507
Xiao, J., Wang, Y., A uniqueness principle for u^p≤(−Δ)^α/2 u in the Euclidean space, Commun. Contemp. Math. 18 (2016), no. 6, 1650019, 17 pp
Liu, Y., Xiao, J., Wang, Y., Nonnegative solutions of a fractional sub-Laplacian differential inequality on Heisenberg group, Dyn. Partial Differ. Equ. 12 (2015), no. 4, 379--403
Xiao, J., Wang, Y., Homogeneous Campanato-Sobolev classes, Appl. Comput. Harmon. Anal. 39 (2015), no. 2, 214--247
Guo, Z., Oh, T., Wang, Y., Strichartz estimates for Schrödinger equations on irrational tori, Proc. Lond. Math. Soc. 109 (2014), no. 4, 975--1013
Guo, Z., Wang, Y., Improved Strichartz estimates for a class of dispersive equations in the radial case and their applications to nonlinear Schrödinger and wave equations. J. Anal. Math. 124 (2014), 1--38
Molinet, L., Wang, Y., Dispersive limit from the Kawahara to the KdV equation, J. Differential Equations 255, (2013), 2196--2219
Wang, Y., Periodic nonlinear Schrödinger equation in critical H^s(T^n) spaces, SIAM J. Math. Anal. 45, (2013), 1691--1703
Wang, Y., Periodic Cubic Hyperbolic Schrödinger equation on T^2, J. Funct. Anal. 265 (2013), 424--434
Wang, Y., Global well-posedness and scattering for derivative Schrödinger equation, Comm. Partial Differential Equations 36 (2011), 1694--1722
Guo, Z., Peng, L., Wang, B., Wang, Y., Uniform well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation, Adv. in Math. 228 (2011), 647--677
Guo, Z., Wang, Y., On the well-posedness of the Schrödinger-KdV system, J. Differential Equations 249 (2010), 2500--2520