John Meyer
John Meyer,伯明翰大学应用数学博士;曾任伯明翰大学应用数学讲师,主要研究反应扩散理论、拟线性抛物型偏微分方程等;现任伯明翰大学数学学院讲师。
邮件:j.c.meyer@bham.ac.uk
2009年7月 伯明翰大学 应用数学
2013年7月 伯明翰大学 应用数学博士
伯明翰大学 应用数学讲师
伯明翰大学 数学讲师
研究兴趣:反应扩散理论、极值原理、拟线性抛物型偏微分方程、化学反应模型、椭圆抛物线偏微分方程解的正则性
研究经历:
2012年9月-2013年9月EPSRC博士奖
伯明翰大学:在研究生、本科和基础阶段有丰富的教学经验,教学内容包括:应用非线性动力系统、混沌理论、c++和数学基础课程的创建及(或)授课;对各类课题的大四本科生进行项目督导;以及指导金融工程和数学建模专业的研究生学位论文。
暨南大学:经济学应用数学、统计学应用数学、信息计算机科学应用数学和数学应用数学双学位课程讲师。
Book
Meyer, J & Needham, D 2015, The cauchy problem for non-lipschitz semi-linear parabolic partial differential equations. London Mathematical Society Lecture Note Series, no. 419, Cambridge University Press, Cambridge, UK. https://doi.org/
Article
Needham, D, Meyer, J, Billingham, J & Drysdale, C 2023, 'The Riemann problem for a generalized Burgers equation with spatially decaying sound speed: I Large-time asymptotics', Studies in Applied Mathematics, vol. 150, no. 4, pp. 963-995. https://doi.org/
Kinnear, G, Jones, I, Sangwin, C, Alarfaj, M, Davies, B, Fearn, S, Foster, C, Heck, A, Henderson, K, Hunt, T, Iannone, P, Kontorovich, I, Larson, N, Lowe, T, Meyer, J, O’Shea, A, Rowlett, P, Sikurajapathi, I & Wong, T 2022, 'A collaboratively-derived research agenda for e-assessment in undergraduate mathematics', International Journal of Research in Undergraduate Mathematics Education. https://doi.org/
Meyer, J 2022, 'A note on boundary point principles for partial differential inequalities of elliptic type', Boundary Value Problems, vol. 2022, no. 1, 33, pp. 1-20. https://doi.org/
Meyer, J 2021, 'A note on radio wave propagation' Mathematics Today, vol. 57, no. 2, pp. 61-63.
Jones, D, Meyer, J & Huang, J 2021, 'Reflections on remote teaching', MSOR Connections, vol. 19, no. 1, pp. 47-54. https://doi.org/
Mason, S, Meyer, J & Needham, D 2021, 'The development of a wax layer on the interior wall of a circular pipe transporting heated oil: the effects of temperature-dependent wax conductivity', Journal of Engineering Mathematics, vol. 131, 7. https://doi.org/
Clark, V & Meyer, J 2020, 'On two-signed solutions to a second order semi-linear parabolic partial differential equation with non-Lipschitz nonlinearity', Journal of Differential Equations, vol. 269, no. 2, pp. 1401-1431. https://doi.org/
Meyer, J & Needham, D 2018, 'On a L∞ functional derivative estimate relating to the Cauchy problem for scalar semi-linear parabolic partial differential equations with general continuous nonlinearity', Journal of Differential Equations, vol. 265, no. 8, pp. 3345-3362. https://doi.org/
Meyer, J & Needham, D 2017, 'The evolution to localized and front solutions in a non-Lipschitz reaction-diffusion Cauchy problem with trivial initial data', Journal of Differential Equations, vol. 262, no. 3, pp. 1747-1776. https://doi.org/
Meyer, JC & Needham, DJ 2016, 'Aspects of Hadamard well-posedness for classes of non-Lipschitz semilinear parabolic partial differential equations', Proceedings of the Royal Society of Edinburgh: Section A (Mathematics), vol. 146, no. 4, pp. 777-832. https://doi.org/
Needham, DJ & Meyer, JC 2015, 'A note on the classical weak and strong maximum principles for linear parabolic partial differential inequalities', Zeitschrift für angewandte Mathematik und Physik, vol. 66, no. 4, pp. 2081-2086. https://doi.org/
Meyer, JC & Needham, DJ 2015, 'Well-posedness and qualitative behaviour of a semi-linear parabolic Cauchy problem arising from a generic model for fractional-order autocatalysis', Royal Society of London. Proceedings A. Mathematical, Physical and Engineering Sciences, vol. 471, no. 2175, 20140632. https://doi.org/
Meyer, JC & Needham, DJ 2014, 'Extended weak maximum principles for parabolic partial differential inequalities on unbounded domains', Royal Society of London. Proceedings A. Mathematical, Physical and Engineering Sciences, vol. 470, no. 2167, 20140079. https://doi.org/