Sabrina Kombrink
Sabrina Kombrink博士是数学讲师,也是拓扑和动力学研究小组的成员。她对描述高度不规则物体的几何特征以及是否能听到分形鼓的形状感兴趣。
她的研究处于分析、几何学和随机学的过渡阶段。
邮件:s.kombrink@bham.ac.uk
德国不来梅大学数学博士
德国哥廷根乔治·奥古斯特大学数学与商业(理学)硕士
Sabrina曾就读于德国哥廷根乔治·奥古斯特大学和英国华威大学。她在德国不来梅大学获得了博士学位,并被授予“不来梅学生奖”。
Sabrina曾在德国不来梅大学、德国吕贝克大学和瑞典米特塔格-莱夫勒学院担任博士后职位。在加入英国伯明翰大学之前,她是德国哥廷根乔治·奥古斯特大学的临时数学教授。
Article
Kombrink, S & Winter, S 2020, 'Lattice self-similar sets on the real line are not Minkowski measurable', Ergodic Theory and Dynamical Systems, vol. 40, no. 1, pp. 221-232. https://doi.org/
Kombrink, S & Samuel, T 2019, 'Fractal geometry and dynamics', London Mathematical Society, Newsletter, vol. 481, pp. 24-29. https://doi.org/
Faehnrich, A, Klein, S, Serge, A, Nyhoegen, C, Kombrink, S, Moeller, S, Keller, K, Westermann, J & Kalies, K 2018, 'CD154 costimulation shifts the local T cell receptor repertoire not only during thymic selection but also during peripheral T-dependent humoral immune responses', Frontiers in immunology, vol. 9, 1019. https://doi.org/
Kombrink, S 2018, 'Renewal theorems for processes with dependent interarrival times', Advances in Applied Probability, vol. 50, no. 4, pp. 1193-1216. https://doi.org/
Kesseboehmer, M & Kombrink, S 2017, 'A complex Ruelle-Perron-Frobenius theorem for infinite Markov shifts with applications to renewal theory', Discrete and Continuous Dynamical Systems - Series S, vol. 10, no. 2, pp. 335-352. https://doi.org/
Kombrink, S, Pearse, E & Winter, S 2016, 'Lattice-type self-similar sets with pluriphase generators fail to be Minkowski measurable', Mathematische Zeitschrift, vol. 283, no. 3-4, pp. 1049-1070. https://doi.org/
Kesseböhmer, M & Kombrink, S 2015, 'Minkowski content and fractal Euler characteristic for conformal graph directed systems', Journal of Fractal Geometry, vol. 2, no. 2, pp. 171-227. https://doi.org/
Kesseböhmer, M & Kombrink, S 2012, 'Fractal curvature measures and Minkowski content for self-conformal subsets of the real line', Advances in Mathematics, vol. 230, no. 4-6, pp. 2474-2512. https://doi.org/
Freiberg, U & Kombrink, S 2012, 'Minkowski content and local Minkowski content for a class of self-conformal sets', Geometriae Dedicata, vol. 159, no. 1, pp. 307-325. https://doi.org/
Chapter (peer-reviewed)
Kombrink, S 2021, Renewal Theorems and Their Application in Fractal Geometry. in U Freiberg, B Hambly, M Hinz & S Winter (eds), Fractal Geometry and Stochastics VI. 1 edn, vol. 76, Progress in Probability, vol. 76, Birkhauser Verlag Basel, pp. 71-98. https://doi.org/
Editorial
Kesseböhmer, M, Kombrink, S, Pesin, Y, Samuel, T & Schmeling, J 2021, 'Preface: Thermodynamic formalism: applications to geometry, number theory and stochastics', Stochastics and Dynamics, vol. 21, no. 3, 2102001. https://doi.org/
Other contribution
Kesseböhmer, M & Kombrink, S 2017, Minkowski measurability of infinite conformal graph directed systems and application to apollonian packings..
Kombrink, S 2013, A Survey on Minkowski Measurability of Self-Similar and Self-Conformal Fractals in ℝ^{d}. American Mathematical Society, Contemp. Math. https://doi.org/
Special issue
Kesseböhmer, M, Kombrink, S, Pesin, Y, Samuel, T & Schmeling, J (eds) 2021, 'Special Issue in Honor of the 75th Birthday of Prof. Manfred Denker', Stochastics and Dynamics, vol. 21, no. 3. <https://www.worldscientific.com/