抽象代数 I
学分:3学分
先修课程:向量、几何与线性代数
课程描述:
《抽象代数I》主要讲述近世代数的内容,是高等院校数学系学生必修的一门重要的专业基础理论课,也是深入学习其他数学课程的基础。 本课程内容主要包括群和环,以及域的扩张等内容。具体内容有:1. 群及子群;置换群和对称群;循环群;正规子群;群的同态;群在集合上的作用;西罗定理。2. 环的基本概念;子环、理想与商环;环的同态与同态基本定理;多项式环;整环的商域;唯一分解整环;主理想整环与欧几里得整环。3. 扩域;代数扩张;多项式的分裂域;有限域等。
课程目标:
通过本课程的教学,要求学生:1. 对抽象代数的思想和方法有较深刻的认识, 提高抽象思维、逻辑推理和运算的能力; 2. 获得一定的抽象代数的基础知识, 受到代数方法的初步训练, 为进一步学习代数后继课程打下基础; 3. 能应用抽象代数的知识与方法去理解与处理有关的问题, 培养与提高应用抽象代数的理论分析问题与解决问题的能力。
成绩评定方式:
评定:学期总评成绩(100%)
重评:补考卷面成绩(100%)
成绩评定要求出勤率
课程教材:
1.韩士安,林磊 编著,近世代数,科学出版社,2009.07。
2.Serge Lang, Algebra, Springer, 2002。
Abstract Algebra I
Credits: 3 Credits
Pre-requisite: Vectors, Geometry & Linear Algebra
Description:
Abstract algebra is a common name for the sub-area that studies algebraic structures in their own right. Such structures include groups, rings, fields, modules, vector spaces, and algebras. This course includes something about groups, rings and fields. The detailed contents are divided into 3 parts: 1. Groups and subgroups; permutation groups and symmetric groups; cyclic groups; normal subgroups; homomorphism of groups; groups actions; Sylow theorem. 2. Rings, subrings, ideals and quotient rings; homomorphism of rings; polynomial rings; quotient fields of domains; unique factorization domain; principal ideal domain. 3. Extension field; algebraic extension; splitting field of polynomial; finite field and so on.
Methods of Summative Assessment:
Assessment: Assessments done during semester (100%)
Reassessment: best of 3 hour resit examination (100%)
Attendance at tutorials is a required element of this module.
Recommended textbooks:
1.Shian Han, Lei Lin, Modern Algebra, Science Press, 2009.07.
2.Serge Lang, Algebra, Springer, 2002.