微分方程数值解法
学分:3学分
先修课程:实分析与微积分;向量、几何与线性代数;多元微积分与向量分析
课程简介与目标:
我们将学习微分方程数值解法中的基本概念和基本理论。专题包括常微分方程、抛物方程、椭圆方程和双曲方程的数值解法。我们还将讨论有限元方法。通过该课程的学习,学生应该掌握一些常见方程类型的数值解法,能计算实例。
成绩评定方式:
评定:学期总评成绩(100%)
重评:补考卷面成绩(100%)
成绩评定要求出勤率
参考教材:
林群 编著,微分方程数值解法基础教程(第二版),科学出版社,2012.06。
Numerical Solutions to Differential Equations
Credits: 3 Credits
Pre-requisite: Real Analysis & the Calculus; Vectors, Geometry & Linear Algebra; Multivariable & Vector Analysis
Description:
In this course, we will study the basic concepts and theory of numerical solutions to differential equations. The topics will cover numerical solutions to ordinary differential equations, parabolic equations, elliptic equations and hyperbolic equations. We will also discuss the finite element method.
After this course, the students should understand the basic numerical method of solving differential equations, and can give some no-trivial examples.
Methods of Summative Assessment:
Assessment: Assessments done during semester (100%)
Reassessment: best of 3 hour resit examination (100%)
Attendance at tutorials is a required element of this module.
Textbooks and References:
Lin Qun, Numerical Solutions to Differential Equations, 2nd Edition, Science Press, 2012.06.
Detailed lecture notes will be provided to students.